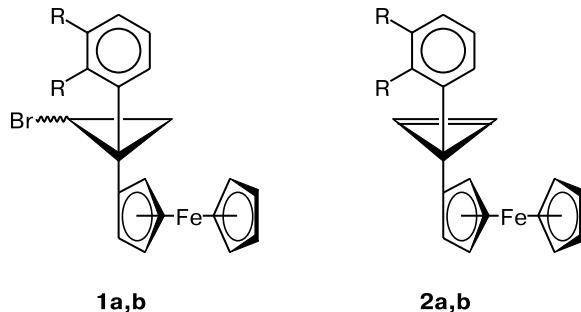


Synthesis, structures, and selected chemical properties of 2-chloro- and 2-bromo-1,1-diferrocenylcyclopropanes

E. I. Klimova,^{a*} T. Klimova,^a M. Martinez Garcia,^b J. M. Martinez Mendoza,^a S. Hernandez Ortega,^b and L. Ruiz Ramirez^a

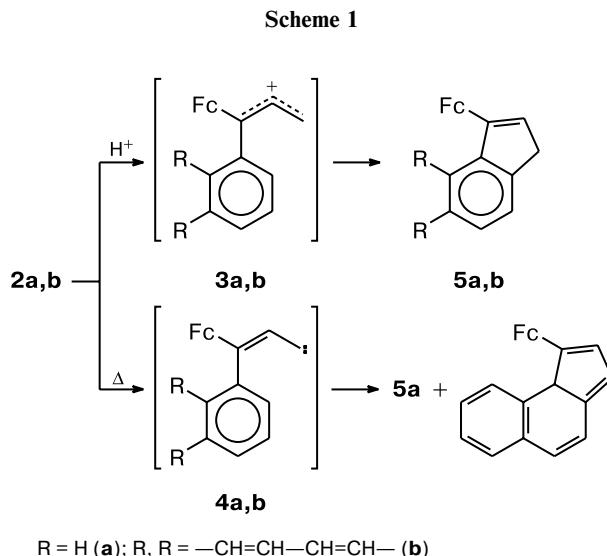
^aDepartment of Chemistry, National Autonomous University of Mexico,
C. P. 04510 Mexico D.F., Mexico.*

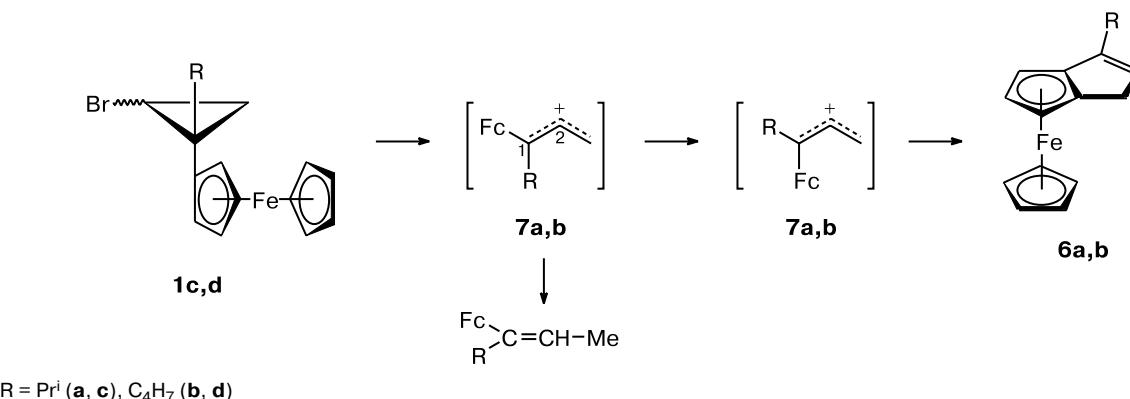

Fax: (525) 622 5366. E-mail: klimova@servidor.unam.mx

^bInstitute of Chemistry, National Autonomous University of Mexico,
C. P. 04510 Mexico D.F., Mexico.**
Fax: (525) 616 2203

2-Chloro- and 2-bromo-1,1-diferrocenylcyclopropanes were synthesized as *Z*- and *E*-isomers with respect to the ferrocenyl substituent having a bisector orientation. The structure of *Z*-2-chloro-1,1-diferrocenylcyclopropane was confirmed by X-ray diffraction analysis. Treatment of the resulting monohalides with potassium *tert*-butoxide in dimethyl sulfoxide afforded 3,3-diferrocenylcyclopropene in 20% yield. The small ring in halogen-substituted diferrocenylcyclopropanes and diferrocenylcyclopropene is readily cleaved to give predominantly 3-ferrocenyl-1*H*-cyclopentaferrocene.

Key words: 3,3-diferrocenylcyclopropene, 1,1-diferrocenyl-2-halocyclopropanes, X-ray diffraction analysis, dehydrohalogenation, opening of the three-carbon ring.


Earlier,^{1–3} we have synthesized the *Z*- and *E*-isomers of 2-bromo-1-ferrocenyl-1-phenyl-, 2-bromo-1-ferrocenyl-1-naphthylcyclopropanes (**1a,b**), and the corresponding 3-aryl-3-ferrocenylcyclopropenes **2a,b**, studied their three-dimensional structures, and examined selected chemical transformations.


R = H (**a**); R, R = –CH=CH–CH=CH– (**b**)

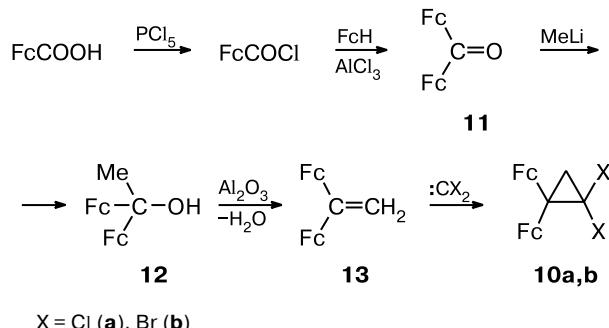
The conformations of monobromo(aryl)ferrocenylcyclopropanes **1a,b** and arylferrocenylcyclopropenes **2a,b** were established by X-ray diffraction analysis. It was found

that the ferrocenyl substituent in all these compounds has a bisector orientation with respect to the plane of the three-membered ring, whereas the aryl groups have non-bisector orientations. In the cyclopropene compounds adopting these conformations, MOs of the ethylene and aryl fragments interact through space, like in 3-alkyl-3-phenylcyclopropenes,⁴ which is, apparently, responsible for stereoselectivity of the addition reactions and intramolecular transformations of 3-aryl-substituted cyclo-

Scheme 2

propenes.^{1–3,5–9} Thus, the small ring in cyclopropenes **2a,b** is readily cleaved to give ferrocenylallylic cations **3a,b**^{1–3} (under the action of acids) or carbenoid intermediates **4a,b**^{1–3} (on heating), which undergo subsequent recyclization exclusively at the aryl fragment, the ferrocenyl substituent remaining intact (Scheme 1).

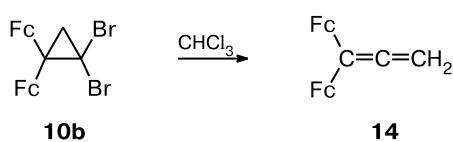
The small ring in monobromo(aryl)ferrocenylcyclopropanes **1a,b** is cleaved under the action of AlCl₃ to form analogous allylic cations **3a,b**^{1–3} and products of their recyclization **5a,b**.^{1–3}


Earlier, products of alkylation of the ferrocene fragment in **6a,b** have been obtained in low yields (4 and 11%, respectively) upon the small-ring opening in 2-bromo-1-isopropyl-¹⁰ and 2-bromo-1-cyclobutylcyclopropanes¹¹ **1c,d**, which could be indicative of a non-bisector orientation of the ferrocenyl substituent in monobromo(alkyl)ferrocenylcyclopropanes by analogy with the orientation of the aryl fragments in 1-aryl-1-ferrocenylcyclopropane monobromides. However, X-ray diffraction study of the structure of 3-ferrocenyl-3-isopropylcyclopropene demonstrated that the ferrocene group in monobromides **1c,d** also has a bisector orientation.^{1,10} Apparently, the small-ring opening in compounds **1c,d** gave rise to 3-alkyl-1H-cyclopentaferrocenes **6a,b** due to a change in the spatial arrangement of the ferrocenyl fragment in intermediate alkyl(ferrocenyl)allylic cations **7a,b** as a result of rotation about the one-and-a-half order C(1)–C(2) bond in spite of a rather high energy barrier^{12–16} (Scheme 2).

Therefore, a non-bisector orientation of the ferrocenyl substituent in cyclopropane compounds remained an open question. It was reasonable to assume that this substituent could have a non-bisector orientation, in particular, in the case of the simultaneous presence of two ferrocene groups (Fc¹ and Fc²) at one of the C atoms of the small ring. In our opinion, this conformation would be expected to facilitate diastereoselectivity of intramolecular transformations of the three-carbon ring in diferrocenylcyclopropane- and diferrocenylcyclopropene-containing compounds to form predominantly products of alkylation

of the ferrocenyl substituent, which has, apparently, a non-bisector orientation with respect to the plane of the three-membered ring.

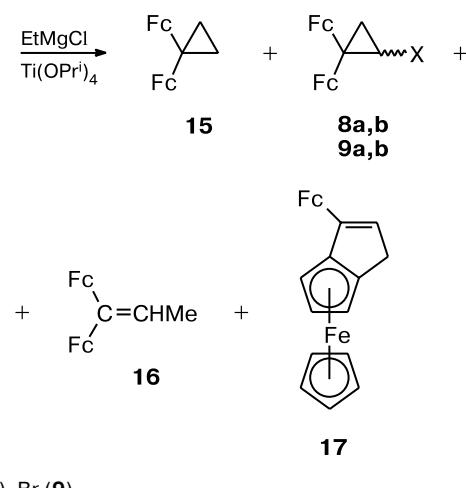
As part of our continuing studies in this field, we synthesized *gem*-diferrocenyl-substituted monochloro- and monobromocyclopropanes **8** and **9** starting from 2,2-dichloro- and 2,2-dibromo-1,1-diferrocenylcyclopropanes (**10a,b**), respectively, which were prepared according to Scheme 3.^{17,18}


Scheme 3

Compounds **10a** and **11–13** were formed without complications in 50–70% yields (see the Experimental section). Dibromide **10b** was isolated in 32% yield. Dichloro- and dibromo(diferrocenyl)cyclopropanes **10a,b** are yellow crystalline compounds, which rapidly decompose on heating. Compound **10a** is more stable than dibromide **10b**. In the crystalline state, compound **10a** remains unchanged upon storage under standard conditions for several months. Crystalline dibromide **10b** turns black after storage even at low temperature during several days.

In solutions (MeCN, C₆H₆, or CHCl₃ + Py), dibromide **10b**, unlike dichloride **10a**, undergoes solvolysis accompanied by the small-ring opening to give 1,1-diferrocenylallene **14** (Scheme 4).

Scheme 4


The structure of compound **14** was confirmed by the ^1H and ^{13}C NMR spectroscopic data (Table 1) and results of elemental analysis (see the Experimental section).

Dihalides **10a,b** were reduced with a mixture of EtMgCl and Ti(OPr)₄.¹⁹ It was found that 2-chloro- and 2-bromo-1,1-diferrocenylcyclopropanes **8** and **9** were generated as mixtures of the *Z* and *E* isomers in a ratio of ~1 : 1 in low total yields (20–25%) (Scheme 5). In addition to monohalides, products of complete reduction (1,1-diferrocenylcyclopropane (**15**)) and opening of the three-carbon ring (1,1-diferrocenylpropene (**16**) and 3-ferrocenyl-1*H*-cyclopentaferroocene (**17**)) were isolated from the reaction mixture.

Table 1. ^1H NMR spectra of the resulting compounds

Compound	δ (J/Hz)			
	C_5H_5 (s)	C_5H_4 (m), C_5H_3 (m)	CH_2	Other protons
8a	4.05 (5 H); 4.16 (5 H)	3.83 (1 H); 4.01 (1 H); 4.04 (1 H); 4.07 (1 H); 4.18 (1 H); 4.21 (3 H)	1.33 (dd, 1 H, $J = 4.8$, $J = 5.7$); 1.90 (dd, 1 H, $J = 5.7$, $J = 7.5$)	3.94 (dd, 1 H, CH , $J = 4.8$, $J = 7.5$)
8b	4.08 (5 H); 4.12 (5 H)	4.03 (2 H); 4.06 (2 H); 4.16 (2 H); 4.23 (2 H)	1.50 (dd, 1 H, $J = 2.7$, $J = 7.3$); 1.69 (dd, 1 H, $J = 4.2$, $J = 7.3$)	3.92 (dd, 1 H, CH , $J = 2.7$, $J = 7.3$)
9a	4.03 (5 H); 4.17 (5 H)	3.82 (1 H); 4.00 (1 H); 4.02 (1 H); 4.06 (1 H); 4.19 (1 H); 4.20 (3 H)	1.34 (dd, 1 H, $J = 4.8$, $J = 5.9$); 1.94 (dd, 1 H, $J = 5.9$, $J = 7.6$)	3.92 (dd, 1 H, CH , $J = 4.8$, $J = 7.6$)
9b	4.10 (5 H); 4.14 (5 H)	4.00 (2 H); 4.04 (2 H); 4.16 (2 H); 4.22 (2 H)	1.49 (dd, 1 H, $J = 3.5$, $J = 6.0$); 1.70 (dd, 1 H, $J = 6.0$, $J = 7.5$)	3.90 (dd, 1 H, CH , $J = 3.5$, $J = 7.5$)
10a	4.13 (5 H); 4.14 (5 H)	4.00 (2 H); 4.16 (2 H); 4.17 (2 H); 4.19 (2 H)	2.24 (s, 2 H)	—
10b	4.11 (5 H); 4.12 (5 H)	4.05 (2 H); 4.18 (4 H); 4.25 (2 H)	2.37 (s, 2 H)	—
11	4.20 (10 H)	4.53 (4 H); 4.99 (4 H)	—	—
12	4.19 (10 H)	4.09 (4 H); 4.11 (4 H)	—	1.88 (s, 3 H, Me); 2.59 (s, 1 H, OH)
13	4.14 (10 H)	4.26 (4 H); 4.62 (4 H)	5.41 (s, 2 H)	—
14	3.96 (5 H); 4.03 (5 H)	4.29 (6 H); 4.97 (2 H)	4.10 (s, 2 H)	—
15	4.10 (5 H); 4.11 (5 H)	3.94 (4 H); 4.05 (4 H)	1.20 (s, 4 H)	—
16	4.09 (5 H); 4.13 (5 H)	4.18 (1 H); 4.23 (1 H); 4.49 (3 H); 4.51 (3 H)	—	1.98 (d, 3 H, Me, $J = 7.5$); 6.23 (q, 1 H, CH , $J = 7.5$)
17	4.11 (5 H); 4.15 (5 H)	4.20 (2 H); 4.24 (2 H); 4.26 (1 H); 4.55 (2 H)	2.80 (d, 2 H, $J = 7.3$)	6.20 (t, 1 H, CH , $J = 7.3$)
18	4.06 (5 H); 4.07 (5 H)	3.80 (4 H); 3.94 (4 H)	—	6.78 (s, 2 H, 2 CH)

Scheme 5

Variations in the reduction conditions did not lead to an increase in the yields of monohalides **8** and **9**. Never-

theless, in spite of the formation of a mixture of compounds, reaction products **8a,b** (or **9a,b**), **15**, **16**, and **17** were isolated by chromatography on Al_2O_3 . The structures of the resulting compounds were unambiguously established by ^1H and ^{13}C NMR spectroscopy (Tables 1 and 2). The assignment of isomeric monohalides **8a**, **9a** and **8b**, **9b** to the *Z* or *E* isomers was made based on the ^1H NMR spectra taking into account the NMR criteria, which have been proposed earlier for determining the *Z*- and *E*-geometric isomers of monobromo(ferrocenyl)cyclopropanes containing the ferrocenyl substituents in a bisector orientation.^{1–3,20–22} Thus, the ^1H NMR spectra of compounds **8a** and **9a** each have two doublets of doublets (δ 1.33 and 1.90; δ 1.36 and 1.94, respectively) belonging to the protons of the methylene group (AB portion of the ABM spin system) with $|\Delta\delta| = \delta_A - \delta_B = 0.57$ and 0.58, which is characteristic of *Z*-monobromo(ferrocenyl)cyclopropanes. In the ^1H NMR spectra of isomeric halocyclopropanes **8b** and **9b**, analogous signals are observed at δ 1.50 and 1.69 ($|\Delta\delta| = 0.19$) and at δ 1.49 and 1.70 ($|\Delta\delta| = 0.21$), respectively, like those in the spectra of the *E* isomers of alkyl- and arylferrocenylbromocyclopropanes studied earlier. In the present study, we discovered for the first time the geometric isomerism in compounds containing pairs of identical substituents at the adjacent C atoms, two bulky ferrocenyl substituents being in different spatial orientations.

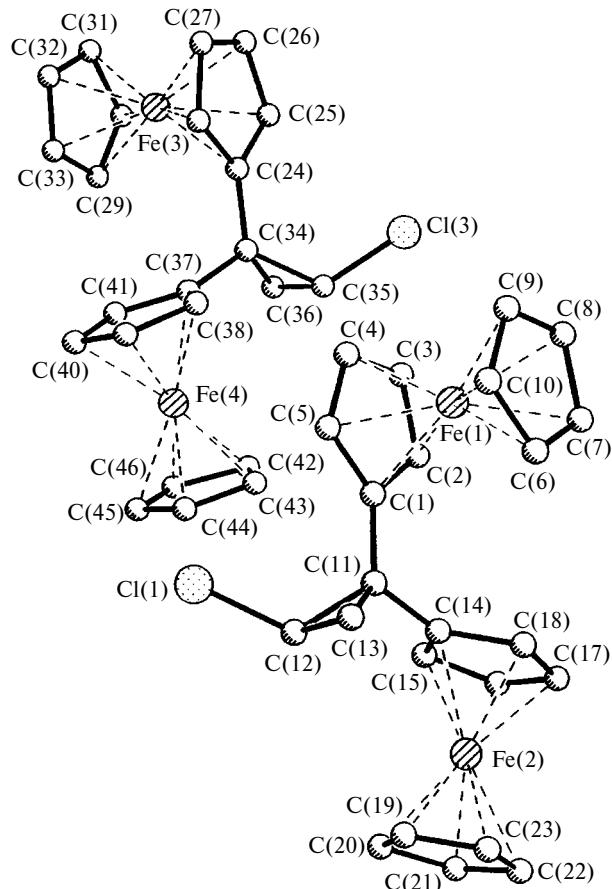
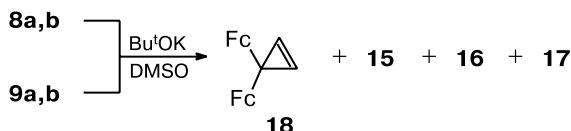
No isomerization of *Z*-monohalides (**8a**, **9a**) into the *E* isomers (**8b**, **9b**) and conversely was revealed by measuring the ^1H NMR spectra of isomeric monohalides **8a**, **9a** and **8b**, **9b** at equal intervals (6 measurements at

12-hour intervals). Only accumulation of the product of the small-ring opening, *viz.*, of compound **17**, was observed in solutions of compounds **8a**, **9a** and **8b**, **9b**. In our opinion, this fact indicates that free rotation about the exocyclic $\text{Fc}-\text{C}(\text{cyclopropyl})$ bonds is substantially hindered or, conceivably, absent, which is the probable reason for the geometric isomerism because two ferrocenyl substituents (Fc^1 and Fc^2) become nonequivalent.

The *Z* configuration of one of the monohalides synthesized, *viz.*, 2-chloro-1,1-diferrocenylcyclopropane (**8a**), was confirmed not only by spectroscopic data but also by X-ray diffraction analysis (Tables 3 and 4). The overall view of molecule **8a** is shown in Fig. 1. The molecular packing in the crystal is presented in Fig. 2. An interesting characteristic feature of the crystal structure of compound **8a** is that the unit cell is composed of closely-spaced pairs of the monochlorocyclopropane molecules containing the Cl atoms in opposite orientations (see Fig. 2). The three-membered ring in molecule **8a** is a scalene triangle. The $\text{C}(11)-\text{C}(13)$ and $\text{C}(34)-\text{C}(35)$ bond lengths are somewhat larger (1.540 and 1.520 Å, respectively), whereas the $\text{C}(12)-\text{C}(13)$ and $\text{C}(34)-\text{C}(36)$ bond lengths are slightly smaller (1.48 and 1.478 Å, respectively) than the standard values (the typical C–C bond length in cyclopropanes is ~1.51 Å).^{23,24} In compound **8a**, the angles of rotation of the cyclopentadienyl rings of the Fc^1 and Fc^3 fragments correspond to the bisector orientations with respect to the three-membered ring, whereas the angles of rotation of the cyclopentadienyl rings of the Fc^2 and Fc^4 fragments correspond to non-bisector orientations. The ferrocenyl substituents Fc^1 and Fc^3 having the bisector orientations and the $\text{Cl}(1)$ and $\text{Cl}(3)$ atoms are in *cis* positions. The $\text{Fe}-\text{C}$ bond lengths have standard values, and the ferrocene sandwiches show a typical geometry.¹⁰

Table 2. ^{13}C NMR spectra of compounds **8a**, **10b**, and **13–17**

Com- ound	δ					
	C_5H_5	C_5H_4 , C_5H_3	CH_2	Me, CH	C	C_{ipso} (Fc)
8a	68.5,	66.5, 67.0,	24.5	43.7	25.3	90.3,
	68.7	67.2, 67.4,				95.0
		67.8, 68.0,				
		68.9, 69.0				
10b	69.4,	66.1 (2 C);	36.2	—	32.5,	94.2,
	69.5	66.7 (2 C);			37.5	94.4
		69.6; 70.0;				
		70.6; 71.5				
13	69.5	67.8, 68.1	109.4	—	143.0	85.7
14	69.5,	66.9, 67.3,	112.6	—	116.6,	87.8,
	69.7	70.7, 71.0			124.7	88.7
15	68.4	66.7, 67.5	19.2	—	17.8	96.8
16	69.2,	67.2, 67.4,	—	19.2,	133.5	84.4,
	69.3	68.2, 69.7		123.3		90.4
17	69.3,	67.3, 67.6,	30.6	128.9	133.4	84.5,
	69.4	68.3, 68.5,				90.3,
		69.2, 69.5,				98.7
		69.9				



Table 3. Selected bond lengths (d) and bond angles (ω) in molecule **8a**

Bond	$d/\text{\AA}$	Angle	ω/deg
$\text{C}(11)-\text{C}(12)$	1.513(16)	$\text{C}(12)-\text{C}(13)-\text{C}(11)$	60.0(7)
$\text{C}(11)-\text{C}(13)$	1.540(15)	$\text{C}(12)-\text{C}(11)-\text{C}(13)$	58.2(9)
$\text{C}(12)-\text{C}(13)$	1.48(2)	$\text{C}(13)-\text{C}(12)-\text{C}(11)$	61.8(8)
$\text{C}(1)-\text{C}(11)$	1.466(17)	$\text{C}(13)-\text{C}(12)-\text{Cl}(1)$	119.1(11)
$\text{C}(11)-\text{C}(14)$	1.519(16)	$\text{C}(11)-\text{C}(12)-\text{Cl}(1)$	122.5(10)
$\text{Cl}(20)-\text{C}(12)$	1.753(15)	$\text{C}(1)-\text{C}(11)-\text{C}(14)$	113.4(9)
$\text{C}(34)-\text{C}(35)$	1.520(19)	$\text{C}(1)-\text{C}(11)-\text{C}(13)$	120.9(11)
$\text{C}(35)-\text{C}(36)$	1.50(2)	$\text{C}(12)-\text{C}(11)-\text{C}(14)$	113.9(10)
$\text{C}(34)-\text{C}(36)$	1.478(18)	$\text{C}(36)-\text{C}(34)-\text{C}(35)$	60.1(9)
$\text{C}(34)-\text{C}(37)$	1.539(16)	$\text{C}(36)-\text{C}(35)-\text{C}(34)$	58.6(9)
$\text{C}(24)-\text{C}(34)$	1.472(19)	$\text{C}(34)-\text{C}(36)-\text{C}(35)$	61.3(9)
$\text{C}(11)-\text{C}(10)$	1.558(11)	$\text{C}(24)-\text{C}(34)-\text{C}(36)$	118.8(11)
$\text{Cl}(3)-\text{C}(35)$	1.752(14)	$\text{C}(36)-\text{C}(35)-\text{Cl}(3)$	119.2(11)
$\text{C}(24)-\text{C}(25)$	1.479(18)	$\text{C}(34)-\text{C}(35)-\text{Cl}(3)$	121.3(12)
$\text{C}(1)-\text{C}(2)$	1.424(17)	$\text{C}(24)-\text{C}(34)-\text{C}(37)$	113.7(11)
$\text{C}(1)-\text{Fe}(1)$	2.058(11)	$\text{C}(41)-\text{C}(37)-\text{C}(34)$	127.2(11)

Table 4. Crystallographic characteristics and details of X-ray diffraction study of compound **8a**

Parameter	8a
Molecular formula	$C_{46}H_{42}Cl_2Fe_4$
Molecular weight/g mol ⁻¹	889.10
T/K	293
Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	17.209(3)
b/Å	12.611(3)
c/Å	17.320(3)
α/deg	90.0
β/deg	94.23(2)
γ/deg	90.0
$V/\text{Å}^3$	3748.6(13)
Z	4
$d_{\text{calc}}/\text{g cm}^{-3}$	1.575
Absorption coefficient/mm ⁻¹	1.694
$F(000)$	1824
Radiation	Mo-K α
$\lambda/\text{\AA}$	0.71073
Monochromator	Graphite
θ/deg	1.61–25.00
Total number of reflections	6819
Number of independent reflections with $R(I > 2\sigma(I))$	6585
R_1	0.1093
WR_2	0.2958
R_{int}	0.1779
Number of parameters in the refinement	470
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.1693P)^2 + 10.77P]$, where $P = (F_0^2 + 2F_c)/3$
Goodness-of-fit (full-matrix least-squares based on F^2)	1.033
Residual electron density ($\rho_{\text{min}}/\rho_{\text{max}}$)/e \cdot Å ⁻³	-0.912/1.219

Dehydrohalogenation of monohalo(diferrocenyl)cyclopropanes **8a,b** and **9a,b** with Bu^tOK in DMSO^{1–3,10,17} afforded 3,3-diferrocenylcyclopropene (**18**) in low yield (~20%) (Scheme 6). In addition, 3-ferrocenyl-1*H*-cyclopentaferrocene **17** (30–40%), di-ferrocenylcyclopropane **15** (~20%), and diferrocenylpropene **16** (~10%) were isolated.

Scheme 6**Fig. 1.** Molecular structure of compound **8a**.

Cyclopropene **18** was obtained as a pale-yellow crystalline compound, which rapidly decomposed on storage under standard conditions. In solutions, compound **18** was isomerized to give compound **17** (~55%) and alkene **16** (~15%) even in the cold (0 °C). We failed to grow crystals of cyclopropene **18** and study its three-dimensional structure by X-ray diffraction analysis. However, based on comparison of the results of X-ray diffraction analysis of the crystal structures of arylferrocenylcyclopropane monobromides prepared from arylferrocenylcyclopropanes and arylferrocenylcyclopropanes^{1–3,10} and taking into account evidence for the essential steric effects of the substituents at the C(3) atom of the cyclopropene nucleus,^{7–9} we believe that the ferrocenyl substituents in 3,3-diferrocenylcyclopropene (**18**) has a spatial orientation identical to that observed in the starting monohalides **8a,b** and **9a,b**.

Apparently, compounds **16** and **17** are generated through the opening of the three-membered ring in monohalides **8** and **9** giving rise to 1,1-diferrocenylallylic cation **7c** (in the presence of magnesium salts, *viz.*, Lewis acids) and through the cleavage of cyclopropene **18** to form diferrocenylcarbenoid **7d**, species **7c** and **7d** being

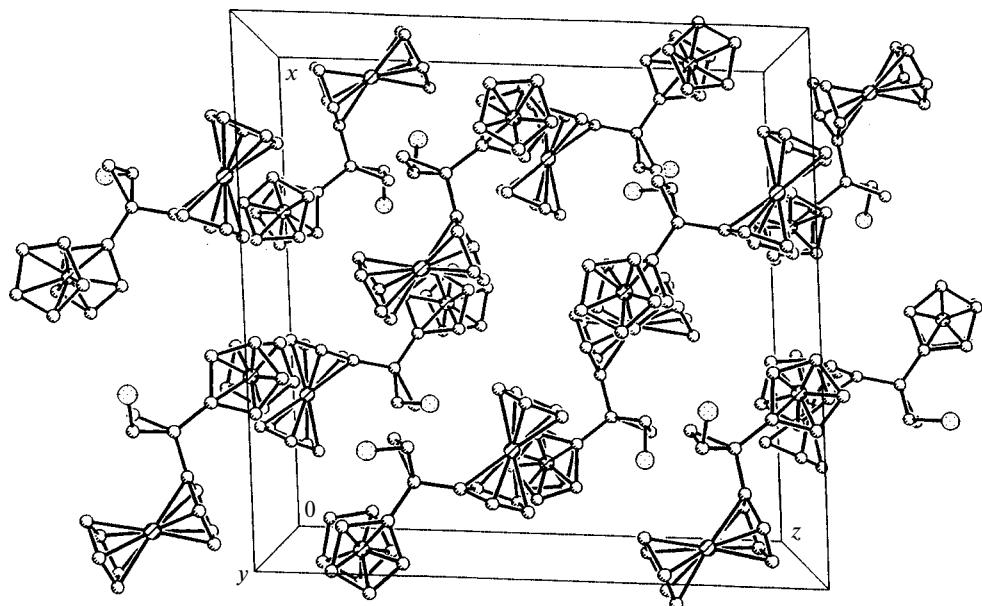
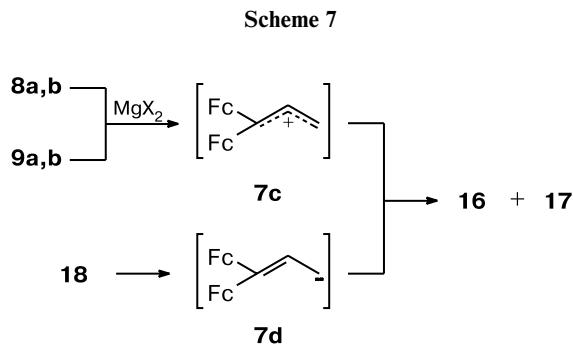



Fig. 2. Molecular packing in the crystal of compound 8a.

intermediates stabilized by two ferrocenyl substituents (Scheme 7).

Then one of the ferrocenyl substituents (in a non-bisector orientation) in intermediates **7c,d** undergoes intramolecular alkylation or these substituents are reduced. Apparently, the latter process, which has been observed by us earlier,^{1–3,18–22} takes place with the involvement of the Fe atom.

To summarize, the results of the present study are indicative of rather high regioselectivity of the intramolecular transformations of monohalo(diferrocenyl)cyclopropanes **8a,b** and **9a,b** and diferrocenylcyclopropene **18**. The small-ring opening in all the compounds under consideration, unlike that in alkyl(ferrocenyl)- and aryl(ferrocenyl)-substituted analogs studied earlier,^{1–3,10} affords predominantly a product of alkylation of the ferrocene fragment. Apparently, the latter fact is associated with a non-bisector orientation of the ferrocenyl substituent with respect to the three-carbon ring.

Experimental

All solvents were dried according to standard procedures and distilled before use. Column chromatography was carried out with the use of Al_2O_3 (Brockmann activity III) and plates with a fixed layer of SiO_2 . The ^1H and ^{13}C NMR spectra were recorded on a Varian Unity Inova instrument (300 and 75 MHz, respectively) in CDCl_3 with Me_4Si as the internal standard.

The unit cell parameters and intensities of reflections were measured on a Siemens P4/PC diffractometer at 293 K.

Ferrocenylcarboxylic acid (97%), ferrocene (98%), cycloheptanone (99%), a 1.4 M MeLi solution in Et_2O , a 2.0 M EtMgCl solution in Et_2O , $\text{Ti}(\text{OPr})_4$ (97%), Bu^tOK (95%), and PCl_5 (95%) were purchased from Aldrich.

Diferrocenyl ketone (11) (see Ref. 25). Phosphorus pentachloride (6.9 g) was added portionwise to a suspension of FcCOOH (6.9 g, 0.03 mol) in dry benzene (80 mL). The reaction mixture was stirred at $\sim 20^\circ\text{C}$ for 20 min and the solvent was distilled off *in vacuo*. The residue (orange oil) was dissolved in CH_2Cl_2 (200 mL) containing ferrocene (6.6 g, 0.035 mol). Then this solution was added dropwise with stirring to a mixture of AlCl_3 (4.0 g, 0.03 mol) in CH_2Cl_2 (200 mL) during ~ 1 h. The reaction mixture was stirred at 20°C for 1 h and then poured into ice water (500 mL). The organic layer was separated from the aqueous layer and washed with water. The solvent was distilled off *in vacuo*. The residue was purified by recrystallization from propan-1-ol. Ketone **11** was obtained as orange crystals in a yield of 5.2 g (50%), m.p. $203\text{--}204^\circ\text{C}$ (*cf. lit. data*²⁵: m.p. 204°C).

1,1-Diferrocenylethanol (12). A solution of MeLi in Et_2O (0.03 mol) was added with stirring to a solution of ketone **11** (4.0 g, 0.01 mol) in anhydrous THF (100 mL). The reaction mixture was stirred for 1 h and then treated with a 5% NaOH solution. The organic layer was separated from the aqueous layer, washed with water, and dried over Na_2SO_4 . The solvent was distilled off *in vacuo* and the residue was recrystallized from

propan-1-ol. Alcohol **12** was obtained as yellow crystals in a yield of 2.92 g (70%), m.p. 221–223 °C. Found (%): C, 63.67; H, 5.48; Fe, 27.11. $C_{22}H_{22}Fe_2O$. Calculated (%): C, 63.80; H, 5.36; Fe, 26.98.

1,1-Diferrocenylethylene (13). Alcohol **12** (4.14 g, 0.01 mol) was dissolved in $CHCl_3$ (50 mL). The resulting solution was mixed with Al_2O_3 (Brockmann activity I, 50 g). The reaction mixture was dried in air and chromatographed on a 30-cm column with a layer of pure Al_2O_3 (Brockmann activity III) using hexane as the eluent. Alkene **13** was obtained as red crystals in a yield 2.8 g (70%), m.p. 163–164 °C. Found (%): C, 66.54; H, 5.27; Fe, 28.41. $C_{22}H_{20}Fe_2$. Calculated (%): C, 66.71; H, 5.09; Fe, 28.20.

2,2-Dichloro-1,1-diferrocenylcyclopropane (10a) was synthesized according to a procedure described previously.²⁶ Alkene **13** (3.96 g, 0.01 mol), $CHCl_3$ (50 mL), a 50% NaOH solution (40 mL), CH_2Cl_2 (100 mL), and $BnNEt_3Cl$ (1 g) were placed in a round-bottom flask equipped with a reflux condenser and a magnetic stirrer. The reaction mixture, which immediately warmed up, was stirred at ~20 °C for 2 h and poured into ice water (200 mL). The organic layer was separated from the aqueous layer, washed with water, and dried over Na_2SO_4 . The solvent was distilled off *in vacuo* and the residue was chromatographed on Al_2O_3 (hexane as the eluent). Dichlorocyclopropane **10a** was obtained as a yellow powder in a yield of 3.21 g (67%), t.decomp. ~178 °C. Found (%): C, 57.87; H, 4.08; Cl, 14.73; Fe, 23.49. $C_{23}H_{20}Cl_2Fe_2$. Calculated (%): C, 57.66; H, 4.20; Cl, 14.82; Fe, 23.32.

2,2-Dibromo-1,1-diferrocenylcyclopropane (10b). Dibromide **10b** was prepared according to a known procedure²² from alkene **13** (3.96 g, 0.01 mol) in a yield of 1.82 g (32%) as yellow crystals, t.decomp. 163 °C. Found (%): C, 48.49; H, 3.71; Br, 28.23; Fe, 19.51. $C_{23}H_{20}Br_2Fe_2$. Calculated (%): C, 48.64; H, 3.55; Br, 28.14; Fe, 19.67.

Solvolution of 2,2-dibromo-1,1-diferrocenylcyclopropane 10b. Dibromocyclopropane **10b** (0.57 g, 0.001 mol) was dissolved in a mixture of $CHCl_3$ (10 mL) and Py (0.5 mL). The solution was kept at ~20 °C for 7 days. Then the solvent was distilled off *in vacuo* and the residue was chromatographed in a thin layer on Al_2O_3 (hexane as the eluent). 1,1-Diferrocenylallene (**14**) was obtained as yellow crystals in a yield of 0.17 g (41%), m.p. 128–129 °C, R_f 0.78. Found (%): C, 67.56; H, 5.08; Fe, 27.54. $C_{23}H_{20}Fe_2$. Calculated (%): C, 67.70; H, 4.93; Fe, 27.37.

Reduction of dihalides 10a,b. A solution of $EtMgCl$ in Et_2O and several drops of $Ti(OPr)_4$ were added to a solution of dihalide **10a,b** (0.005 mol) in anhydrous THF (100 mL). The reaction mixture was stirred at ~20 °C for 3 h and then water (50 mL) was added. The organic layer was separated from the aqueous layer, washed with water, and dried over Na_2SO_4 . The solvent was distilled off *in vacuo* and the residue was chromatographed on a plate with a fixed layer of SiO_2 (hexane–ether, 10 : 1).

Products **15**, **16**, **8a,b**, and **17** were obtained from dichloride **10a**.

1,1-Diferrocenylcyclopropane (15). The yield was 0.26 g (13%), yellow crystals, m.p. 141–142 °C, R_f 0.75. Found (%): C, 67.49; H, 5.27; Fe, 27.38. $C_{23}H_{22}Fe_2$. Calculated (%): C, 67.36; H, 5.40; Fe, 27.24.

1,1-Diferrocenylpropene (16). The yield was 0.2 g (11%), yellow crystals, m.p. 136–138 °C, R_f 0.68. Found (%): C, 67.54; H, 5.18; Fe, 27.43. $C_{23}H_{22}Fe_2$. Calculated (%): C, 67.36; H, 5.40; Fe, 27.24.

Z-2-Chloro-1,1-diferrocenylcyclopropane (8a). The yield was 0.25 g (11%), yellow crystals, t.decomp. ~162 °C, R_f 0.60. Found (%): C, 62.24; H, 4.58; Cl, 8.12; Fe, 25.21. $C_{23}H_{21}ClFe_2$. Calculated (%): C, 62.13; H, 4.76; Cl, 7.99; Fe, 25.12.

E-2-Chloro-1,1-diferrocenylcyclopropane (8b). The yield was 0.21 g (9%), yellow crystals, t.decomp. ~170 °C, R_f 0.54. Found (%): C, 61.97; H, 4.99; Cl, 7.84; Fe, 25.27. $C_{23}H_{21}ClFe_2$. Calculated (%): C, 62.13; H, 4.76; Cl, 7.99; Fe, 25.12.

3-Ferrocenyl-1H-cyclopentaferrocene (17). The yield was 0.7 g (33%), yellow crystals, m.p. 153–154 °C, R_f 0.36. Found (%): C, 67.82; H, 4.79; Fe, 27.49. $C_{23}H_{20}Fe_2$. Calculated (%): C, 67.69; H, 4.94; Fe, 27.37.

The reaction of dibromide **10b** gave rise to compound **15** (0.37 g, 18%; m.p. 142 °C), compound **16** (0.24 g, 12%; m.p. 137–138 °C), monobromide **Z-9a** (0.4 g, 16%; t.decomp. 163 °C), monobromide **E-9b** (0.34 g, 14%; t.decomp. 169 °C), and compound **17** (0.61 g, 30%; m.p. 154 °C).

Dehydrohalogenation of diferrocenylcyclopropane mono-halides 8a,b and 9a,b (general procedure). Monohalide **8a,b** or **9a,b** (0.003 mol) was added to a solution of Bu^tOK (0.004 mol) in $DMSO$ (30 mL), and the reaction mixture was stirred at ~35–45 °C for 7 h. Then benzene (100 mL) and water (50 mL) were added. The organic layer was separated from the aqueous layer and washed with water. The solvent was distilled off *in vacuo*. The residue was chromatographed in a thin layer on Al_2O_3 (hexane as the eluent). Products **15–18** were obtained.

Compound 15. The yield was 0.18–0.25 g (15–20%), m.p. 141–142 °C, R_f 0.78.

3,3-Diferrocenylcyclopropene (18). The yield was 0.20–0.24 g (18–21%), m.p. 130–131 °C, R_f 0.78. Found (%): C, 67.86; H, 5.04; Fe, 27.13. $C_{23}H_{20}Fe_2$. Calculated (%): C, 67.69; H, 4.94; Fe, 27.37.

Alkene 16. The yield was 0.12–0.24 g (10–20%), m.p. 137 °C, R_f 0.65.

Compound 17. The yield was 0.36–0.48 g (30–40%), m.p. 153–154 °C, R_f 0.53.

Opening of the three-carbon ring in 3,3-diferrocenylcyclopropene (18). A solution of cyclopropene **18** (0.4 g, 0.001 mol) in benzene (50 mL) was stirred at ~20 °C for 1 h. The solvent was distilled off *in vacuo* and the residue was chromatographed in a thin layer on SiO_2 (hexane–ether, 10 : 1). Alkene **16** was obtained as yellow crystals in a yield of 0.06 g (15%), m.p. (136–138 °C), R_f 0.68. Compound **17** was obtained in a yield of 0.23 g (55%), m.p. 154 °C, R_f 0.39.

We thank O. S. Yañez Muñoz for measuring the NMR spectra.

This study was financially supported by the National Council of Science and Technology (CONACyT, Mexico; Grant 34862-E).

References

- E. I. Klimova, T. Klimova-Berestneva, L. Ruiz Ramirez, M. Martinez Garcia, C. Alvarez Toledano, P. G. Espinosa, and R. A. Toscano, *J. Organomet. Chem.*, 1997, **544**, 130.
- E. I. Klimova, T. Klimova-Berestneva, L. Ruiz Ramirez, M. Martinez Garcia, C. Alvarez Toledano, P. G. Espinosa, and R. A. Toscano, *J. Organomet. Chem.*, 1997, **545–546**, 191.

3. E. I. Klimova, M. Martinez Garcia, T. Klimova, C. Alvarez Toledano, R. A. Toscano, R. Moreno Esparza, and L. Ruiz Ramirez, *J. Organomet. Chem.*, 1998, **566**, 175.
4. V. V. Plemenkov, Kh. S. Giniyatov, Ya. Ya. Villem, N. V. Villem, L. S. Surmina, and I. G. Bolesov, *Dokl. Akad. Nauk SSSR*, 1980, **254**, 895 [*Dokl. Chem.*, 1980 (Engl. Transl.)].
5. M. L. Deem, *Synthesis*, 1972, 675.
6. G. I. Closs, *Adv. Alicycl. Chem.*, 1966, **1**, 53.
7. D. N. Reinhoudt and P. Smael, *Tetrahedron Lett.*, 1973, **29**, 3755.
8. S. Wawzonek, B. J. Studnicka, and A. R. Zigman, *J. Org. Chem.*, 1969, **34**, 1316.
9. D. F. Eaton, R. G. Bergman, and G. S. Hammond, *J. Am. Chem. Soc.*, 1972, **94**, 1351.
10. E. I. Klimova, M. Martinez Garcia, T. Klimova, C. Alvarez Toledano, R. A. Toscano, and L. Ruiz Ramirez, *J. Organomet. Chem.*, 2000, **598**, 254.
11. E. I. Klimova, M. Martinez Garcia, T. Klimova, L. Ruiz Ramirez, and N. N. Meleshonkova, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 2177 [*Russ. Chem. Bull.*, 1999, **48**, 2176 (Engl. Transl.)].
12. G. A. Olah and R. J. Spear, *J. Am. Chem. Soc.*, 1975, **97**, 1539.
13. W. G. Young, S. U. Sharman, and S. Winstein, *J. Am. Chem. Soc.*, 1960, **82**, 1376.
14. M. J. A. Habib, J. Park, and W. E. Watts, *J. Chem. Soc. C*, 1970, 2556.
15. G. A. Olah and M. Mayer, *J. Am. Chem. Soc.*, 1976, **98**, 7333.
16. H. Alper and S. M. Kepner, *J. Org. Chem.*, 1974, **39**, 2303.
17. N. V. Bovin, L. S. Surmina, N. I. Yakushkina, and I. G. Bolesov, *Zh. Org. Khim.*, 1977, 1888 [*J. Org. Chem. USSR*, 1977, **13** (Engl. Transl.)].
18. E. I. Klimova, V. N. Postnov, C. Alvarez Toledano, J. Gomez-Lara, R. A. Toscano, and M. Martinez Garcia, *Dokl. Akad.*, 1995, **344**, 639 [*Dokl. Chem.*, 1995 (Engl. Transl.)].
19. E. I. Klimova, C. T. Alvarez, T. Klimova, M. Martinez Garcia, R. A. Toscano, and L. Ruiz Ramirez, *Zh. Obshch. Khim.*, 1998, 999 [*Russ. J. Gen. Chem.*, 1998, **68** (Engl. Transl.)].
20. E. I. Klimova, C. Alvarez Toledano, M. Martinez Garcia, J. Gomez-Lara, N. N. Meleshonkova, and I. G. Bolesov, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 615 [*Russ. Chem. Bull.*, 1996, **45**, 613 (Engl. Transl.)].
21. E. I. Klimova, L. Ruiz Ramirez, T. Klimova, M. Martinez Garcia, R. Moreno Esparza, C. Alvarez Toledano, and R. A. Toscano, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 486 [*Russ. Chem. Bull.*, 1998, **47**, 613 (Engl. Transl.)].
22. E. I. Klimova, L. Ruiz Ramirez, R. Moreno Esparza, T. Klimova, M. Martinez Garcia, N. N. Meleshonkova, and A. V. Churakov, *J. Organomet. Chem.*, 1998, **559**, 1.
23. R. E. Long, H. Maddok, and K. N. Trueblood, *Acta Crystallogr., Sect. B*, 1969, **25**, 2083.
24. A. Hartman and F. L. Hirschfeld, *Acta Crystallogr., Sect. B*, 1964, **20**, 80.
25. M. D. Rausch, E. O. Fischer, and H. Grubert, *J. Am. Chem. Soc.*, 1960, **82**, 76.
26. R. Goker, *J. Org. Chem.*, 1973, **38**, 1913.

Received December 25, 2001;
in revised form July 10, 2002